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S-Fe-Cu isotope systems are powerful tracers for revealing geochemical processes. However, the microanalysis of S-Fe-Cu
isotopes is critically limited by the lack of suitable reference materials. Herein, we present three potential reference
materials Ll-Cpy (chalcopyrite), Ll-Po (pyrrhotite) and Ll-Sp (sphalerite) for in situ S-Fe-Cu isotope measurements.
Numerous in situ S-Fe-Cu isotope measurements were performed over two years to assess isotopic homogeneity. The bulk
S isotopic compositions were determined independently in seven laboratories by isotope ratio mass spectrometry (IRMS);
the preferred δ34SV-CDT for Ll-Cpy, Ll-Po, Ll-Sp are 6.13 � 0.37‰ (2s), 6.42 � 0.37‰ (2s) and 6.28 � 0.38‰ (2s),
respectively. The bulk Fe isotope ratios in Fe-bearing Ll-Cpy and Ll-Po were determined using solution nebulisation multi-
collector inductively coupled plasma-mass spectrometry, and the obtained δ56FeIRMM-014 values are 0.57 � 0.07‰ (2s)
and -0.62 � 0.07‰ (2s), respectively. The mean bulk δ65CuNIST SRM 976 value of Ll-Cpy is 0.57 � 0.06‰ (2s). All the
bulk values are in good agreement with the long-term statistical results of laser ablation-MC-ICP-MS and proposed as the
recommended values. These sulfides are well characterised and isotopically homogeneous (at 30–40 μm spatial
resolution), and can be used as potential calibration materials for in situ S-Fe-Cu isotope measurements.
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Sulfur (S), iron (Fe) and copper (Cu) are ubiquitous
elements with different oxidation states that are heteroge-
neously distributed throughout reservoirs (Sawaki et al. 2018,
Paiste et al. 2022, Smith et al. 2022, McLoughlin et al.
2023). The S-Fe-Cu isotope systems in sulfides have been
well proven to be excellent geochemical tracers in diverse
fields of geoscience, such as research on planetary evolution
events, mineralisation mechanisms, hydrothermal activity and
bioenvironmental processes (Li et al. 2010, Marin-Carbonne
et al. 2014, Mount et al. 2022, Hiebert et al. 2016,
Brzozowski et al. 2021, Yu et al. 2021, Lehmann et al. 2022,
Zhao et al. 2022).

In general, S isotopes are measured by gas-source
isotope ratio mass spectrometry (GS-IRMS) (Ke et al. 2017),
whereas Fe and Cu isotope ratios are usually determined by
solution nebulisation multi-collector ICP-MS (SN-MC-ICP-MS)
after complex whole-rock dissolution and chemical

purification processes (Sossi et al. 2015, Zhu et al. 2019).
These bulk analytical techniques are considered the
standard methods for isotope ratio determinations; however,
chemical pretreatment is time-consuming and requires large
amounts of reagents (Baublys et al. 2004, Zhu et al. 2019,
Lei et al. 2022). In particular, avoiding contamination from
inclusions or to distinguishing the information from the small
mineral scale is difficult. Thus, an in situ analytical approach
for S-Fe-Cu isotopic analysis is needed to meet the demands
of numerous applications (Jenner and Arevalo 2016, Müller
and Fietzke 2016).

In the last two decades, microanalytical techniques such
as secondary ion mass spectroscopy (SIMS) and laser
ablation (LA)-MC-ICP-MS have been widely used and have
considerably advanced isotope geochemistry research
(Resano et al. 2013, Oeser et al. 2015, Zheng et al.
2017, Hammerli et al. 2021, Hu et al. 2022). However, the
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matrix effect remains an intractable problem that impedes
the development of these in situ techniques for S-Fe-Cu
isotope measurement (Gilbert et al. 2014, Lazarov and
Horn 2015, Wohlgemuth-Ueberwasser and Jochum 2015).
The use of matrix-matched reference materials is considered
the simplest and most effective approach to overcome the
matrix effect (Wilson et al. 2002, Jackson et al. 2003,
Nasdala et al. 2018, Hu et al. 2021, Luo et al. 2021).

Recently, an increasing number of studies have focused
on developing sulfide reference materials (LaFlamme et al.
2016, Onuk et al. 2017, Chen et al. 2021a). Natural
minerals are the best choice among all reference materials
because complete matrix matching (chemical composition
and physical properties) can be achieved during micro-
analysis. Although considerable effort has been focused on
preparing S-Fe-Cu isotope reference materials, to the best of
our knowledge most of these reference materials are only for
the determination of one of the S-Fe-Cu isotopes, and certain
substances are almost exhausted or are no longer available
(Tables 1–3).

In this paper, we present natural chalcopyrite, pyrrhotite
and sphalerite candidate reference materials for in situ S-Fe-
Cu isotope measurement. Numerous LA-MC-ICP-MS

measurements and bulk analyses were performed to assess
the S-Fe-Cu isotope ratios of these samples. The results show
that these sulfides are well characterised and isotopically
homogeneous and can be used as reference materials for in
situ S-Fe-Cu isotope measurements. These reference mate-
rials are available in sufficient amounts to be shared with
other in situ analytical laboratories.

Sample description and preparation

The sulfide samples (Figure 1a-c) in this study were
collected from the Linglong golden deposit located in the
Jiaodong area in the eastern part of the North China
Craton. The deposit is one of the largest quartz vein-type
gold deposits in Jiaodong, where the ore formation is mainly
controlled by a NNE-NE trending fault zone. Here, the
masses of these three massive sulfides are � 6.4 (Figure 1a),
� 0.7 (Figure 1b) and � 1.0 kg (Figure 1c).

The massive sulfide samples (Figure 1a–c) comprise
80% chalcopyrite, 10% pyrrhotite, 5% sphalerite and minor
amounts of mica and quartz. One-tenth of the three massive
sulfide samples (total mass � 800 g) were selected for
mineral separation, yielding � 500 g pure chalcopyrite

Table 1.
Recent studies on natural sulfide reference materials (RMs) for in situ sulfur isotope measurement

Mineral RM
name

δ34S
(‰)

2s Instrument Sample amount Collection site Reference

Pyrite PPP-1 5.3 0.2 Ion microprobe
and IRMS

Massive mineral specimens Recrystallised sedimentary pyrite,
Sukhoi Log deposit, Russia

Gilbert et al. (2014)
Pyrrhotite Po-10 6 0.3
Bornite N-11 -4.4 0.6
Pyrite Sierra 2.17 0.25 SIMS A 2 cm3 cube Cretaceous stratigraphy mine of Mexico LaFlamme et al.

(2016)Chalcopyrite Nifty-b -3.58 0.23 A 2 cm3 piece of a larger
8 cm3 grain

Copper deposit in Western Australia

Pyrrhotite Alexo 5.23 0.30 0.1–2 mm grains Alexo Ni-Cu-(PGE) deposit in Canada
Pentlandite VMSO 3.22 0.33 0.1–0.5 mm magmatic

pentlandite grains
Sulfide deposits in Western Australia

Chalcopyrite Cpy-1 4.21 0.23 LA-MC-ICP-MS Mineral aggregation - Chen et al. (2017)
GC -0.70 0.2

Pyrrhotite YP136 1.5 0.3 SIMS Drill core Mafic complex in northern Finland Li et al. (2018)
Chalcopyrite HTS4-6 0.58 0.39 SIMS/LA-MC-ICP-

MS
Total of 102 g Sulfide deposit located in Liaoning,

China
Li et al. (2020)

Pyrrhotite Jc-Po 0.06 0.27 SIMS Hand specimen, and
handpicked � 8 g of
pyrrhotite grains and 3 g of
pentlandite

Jinchuan Ni-Cu-PGE sulfide deposit,
south-western China

Chen et al. (2021b)
Pentlandite Jc-Pn -0.09 0.19

Chalcopyrite TC1725 12.78 0.38 LA-MC-ICP-MS The hand specimen prepared
to four strips and five epoxy
mounts

Tongchang copper deposit, Jiangxi,
China

Bao et al. (2021b)

Galena NWU-
GN

28.21 0.17 LA-MC-ICP-MS � 100 g of galena fragments Changbei Pb-Zn deposit, Gansu, China Lv et al. (2022)

Chalcopyrite GC-1 -0.65 0.28 � 40 g Guichi copper mine in Anhui, China.
Sphalerite SPH-1 -7.13 0.41 Total mass of 40 g Kangjiawan Pb-Zn sulfide deposit,

Hunan, China
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(Ll-Cpy), � 40 g pure pyrrhotite (Ll-Po), and � 20 g pure
sphalerite (Ll-Sp) fragments, respectively. Then, approximately
10 g of pure Ll-Cpy and Ll-Po fragments were selected and
packed into 100 tubes (numbered 1–100), whereas 0.8 g
of pure Ll-Sp fragments were packed into eight tubes
(numbered as 1–8) as distributable samples (Figure 2). Ll-
Cpy and Ll-Po tubes were numbered in multiples of ten, and
furthermore all Ll-Sp tubes were selected for the preparation
of epoxy resin mounts (� 200 fragments for each mount).
The remaining pure mineral segments were stored for
distribution and reselection. The remaining massive sulfide
samples were not separated to avoid oxidation.

Analytical methods

Electron probe microanalysis (EPMA), LA-(MC)-ICP-MS,
IRMS and SN-MC-ICP-MS were employed to determine the
chemical and isotope compositions of the candidate sulfide
reference materials.

First, EPMA and LA-ICP-MS were used to measure the
chemical composition of each candidate reference material.
Backscattered electron images were used to highlight
potential chemical zonation, mineralogical inclusions and
fractures in the candidate reference materials. Second, LA-
MC-ICP-MS was used to determine isotope ratios in each
candidate reference material. Isotopic homogeneity was
assessed by the reproducibility of the candidate material.
Finally, IRMS and SN-MC-ICP-MS were used to determine
the bulk S and Fe-Cu isotopic compositions, respectively.
Details of the analytical techniques and processes are
described below.

EPMA and LA-ICP-MS

Elemental mass fractions were measured using EPMA
and LA-ICP-MS. The EPMA measurements were performed
at the Wuhan Sample Solution Analytical Technology Co.
Ltd., Wuhan, China. The analytical conditions of the JEOL

Table 2.
Recent studies on natural sulfide RMs for in situ iron isotope measurement

Minerals RM
Name

δ56Fe
(‰)

2s Instrument Sample amount Collection site Reference

Pyrrhotite Jc-Po -0.34 0.33 LA-MC-ICP-MS Hand specimen, and handpicked � 8 g of
pyrrhotite grains and 3 g of pentlandite

Jinchuan Ni-Cu-PGE sulfide
deposit, southwestern China

Chen
et al. (2021b)Pentlandite Jc-Pn 1.47 0.46

Pyrite Py1308 0.36 0.28 20 g, 10 × 8 × 5 mm cubic crystal Guangdong, China Chen
et al. (2021a)CB -0.89 0.07 5 g, 200–400 μm idiomorphic granular Changba Pb-Zn deposit,

Gansu, China
Aa018 0.52 0.10 37 g, 15 × 15 × 10 mm cubic crystal Navarra, Spain

LY 0.60 0.08 80 g, 26 × 18 × 34 mm cubic crystal Liyang, Hunan, China
Py-Bal-13B -1.38 0.11 - -

Chalcopyrite Ccp2656 0.10 0.12 - -
Pyrite Balmat -1.27 0.12 - Balmat deposit, USA Xu et al. (2022)
Pyrite NKAu01 0.35 0.15 � 1.3 kg, 6.5 × 6.5 × 6.5 cm Mofang gold deposit, North

Korea
Pyrite Tianyu-Py 0.49 0.20 Handpicked � 4 g of pure pyrite grains Tianyu magmatic sulfide

deposit, China
Chen
et al. (2022a,
2023)

Chalcopyrite Tianyu-Ccp 0.39 0.19 � 20 g of the pure chalcopyrite grains

Table 3.
Recent studies on natural sulfide RMs for in situ copper isotope measurement

Mineral RM name δ65Cu
(‰)

2s Instrument Sample amount Collection site Reference

Chalcopyrite Bougainlille -0.81 0.06 LA-MC-ICP-
MS

- Bougainville porphyry copper
deposit, Papua New Guinea

Li et al. (2010)

TC1725 -1.27 0.04 Hand specimen prepared to four strips and
five epoxy mounts

The Tongchang copper deposit,
China

Bao
et al. (2021a)

14ZJ12-1 -0.21 0.07 Mineral grains, 150 g Xiaseling Cu-W deposit, China Yang
et al. (2023)JGZ-22 0.46 0.08 Mineral grains, 100 g Jiguanzui Cu-Au deposit, China

JGZ-78 -0.06 0.08 Mineral grains, 80 g
TQ-Ccp 0.04 0.04 Fragments, > 50 g Tianqiao Pb-Zn deposit, China Fang

et al. (2023)

The δ values of S-Fe-Cu isotopes are all given by the bulk analysis method. 2s is the uncertainty of sample uniformity obtained by in situ measurements.
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JXA-8230 electron probe employed for all elements
included an accelerating voltage of � 20 kV, a beam
current of 50 nA and a beam size of 1 μm. In addition,
several critical trace elements were determined (such as Cr,
which had an isobaric interference of 54Cr on 54Fe) in Ll-Cpy
and Ll-Po fragments by LA-ICP-MS to assess interferences
during isotope measurement. LA-ICP-MS experiments were
performed at the State Key Laboratory of Geological
Processes and Mineral Resources (GPMR), China University
of Geosciences, Wuhan. An Agilent 7900 quadruple ICP-
MS instrument (Agilent Technology, Tokyo, Japan) combined
with a GeoLas HD laser ablation system (Coherent Inc.,

Göttingen, Germany) was used for the quantitative analysis
in this study. The details of the analytical method are
described in Feng et al. (2018).

In situ S-Fe-Cu isotope measurements by
(fs)-LA-MC-ICP-MS

The in situ isotopic measurements were conducted at the
GPMR and the State Key Laboratory of Continental
Dynamics (SKLCD), Northwest University. For S isotope
measurement in GPMR, a NEPTUNE Plus MC-ICP-MS

Figure 1. Photographs of the collected massive sulfide samples.

Figure 2. Photographs of sub-packages of (a) Ll-Cpy, (b) Ll-Po and (c) Ll-Sp minerals. Each tube is filled with

approximately 100 mg of pure sample grains. A total of 100 tubes for both Ll-Cpy and Ll-Po (numbered 1–100), and
eight tubes for Ll-Sp (numbered 1–8).

2 3 0 © 2023 The Authors. Geostandards and Geoanalytical Research © 2023 International Association of Geoanalysts.
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instrument (Thermo Fisher Scientific, Bremen, Germany) was
combined with a NWR FemtoUC femtosecond system (New
Wave Research, Fremont, CA, USA) for these experiments.
The NEPTUNE Plus instrument was a double focusing MC-
ICP-MS equipped with seven fixed electron multiplier ion
counters and nine Faraday cups fitted with 1011 Ω resistors.
In addition, a large dry interface pump (100 m3 h-1

pumping speed), an X skimmer cone and a Jet sample cone
were used for isotope measurements. The LA system
consisted of a 300 fs Yb:KGW femtosecond laser amplifier
(PHAROS, Light Conversion Ltd., Vilnius, Lithuania) with a
wavelength of 257 nm, and was equipped with a two-
volume cell, which had a constant distance between the
laser ablation and aerosol extraction positions. Helium gas
was used as the carrier gas, and a signal-smoothing device
was used downstream of the sample cell to enhance the
stability of the ablation signal (Hu et al. 2012). The single-
spot ablation mode was used with a spot size of 40 μm, a
repetition rate of 3 Hz and a laser fluence of � 3.5 J cm-2.
Signals of 32S, 33S and 34S were collected in the L2, centre
and H2 Faraday cups, respectively. Approximately 4 ml
min-1 of nitrogen was added to the central gas flow to
reduce polyatomic interferences (Fu et al. 2016). All
measurements were performed in static mode using medium
resolution with a resolving power of 4000. Individual data
acquisition consisted of one block of 120 cycles with an
integration time of 0.524 s per cycle. The total acquisition
time for each measurement was approximately 63 s,
including 15 s of background signal following a time of
40 s for ablation signal acquisition, and 8 s for wash-out. The
mean background intensity was subtracted from each
individual data sweep of the ablation signal for a given
isotopic mass. The standard-sample-bracketing method
(SSB) was employed to correct instrumental drift and mass
bias. Pyrrhotite reference material YP136 was used as the
calibrator, whereas the pyrite reference material PPP-1,
chalcopyrite reference material HTS4-6 and sphalerite
reference material SPH-1 were analysed in different
measurement sessions as unknown samples to verify the
accuracy of the calibration method. Details of the fs-LA-MC-
ICP-MS operating conditions and measurement parameters
are summarised in Table 4.

In general, sulfur isotope ratios are expressed in delta (δ)
notation (per mill, ‰) as follows:

δxS ¼ xS=32S
� �

sample=
xS=32S
� �

RM

h i
�1 (1)

where "sample" and "RM" represent the measured samples
and the reference material YP136, respectively, and x is the
mass number 34.

At the SKLCD, a 193 nm excimer LA system (RESOlution
M-50, ASI) was coupled with a Nu 1700 MC-ICP-MS (Nu
1700, Nu Instruments, Wrexham, UK) for in situ S isotope
ratio measurements. All measurements were carried out in
single-spot ablation mode with spot sizes in the range 43–
67 μm, while the signal intensity ranged from 10 to 15 V.
Each sample acquisition consisted of 30 s background, 40 s
data collection, and 50 s wash-out time measurements. The
SSB protocol was used to calibrate the mass bias of
the instrument. The details of the analytical procedure are
described by Bao et al. (2021b), Chen et al. (2022b) and Lv
et al. (2022). For the chalcopyrite S isotope measurements,
Cpy1 and TC1725 (Bao et al. 2021b) were used as the
calibration material and unknown sample. For pyrrhotite S
isotope measurement, PY4 was used as the calibration
material, whereas RPPY (Lv et al. 2022, Chen et al. 2022b)
was used as the unknown sample.

For in situ Fe and Cu isotope measurements at GPMR, the
single-spot ablation mode with a size of 30–40 μm, repetition
rate of 3 Hz and a laser fluence of� 2.5–3.5 J cm-2 was also
used. A small amount of ultra-pure water was introduced
downstream of the ablation cell to create a “wet” plasma
atmosphere in the ICP to suppress the matrix effect during
measurement (Zheng et al. 2018, Chen et al. 2021a, Zhang
et al. 2022). All measurements were performed in static mode
while using low-resolution (resolving power of 400) for Cu
isotopemeasurements andhigh resolution (resolving power of
7000) for Fe isotope measurements. Both the data acquisition
and LA process were similar to those in the S isotope
experiment. The SSB method was employed to correct
instrumental drift and mass bias for Fe and Cu isotope
measurements. The cup configurations for Fe isotope mea-
surement were set to: L4 (53Cr), L1 (54Fe), C (56Fe), H1 (57Fe),

Table 4.
The fs-LA-MC-ICP-MS operating parameters for
S-Fe-Cu isotope measurements

Neptune Plus MC-ICP-MS
RF Power 1200 W
Cool gas flow 16.0 l min-1

Auxiliary gas flow 0.8–1.2 l min-1

Argon make-up gas flow 0.6–1.0 l min-1

Helium carrier gas flow 0.6–0.7 l min-1

Interface cones X skimmer cone + Jet sample cone
Block number 1
Integration time 0.524 s
Laser ablation system
Laser type Yb: KGW femtosecond laser
Wavelength 257 nm
Pulse width 300 fs
Energy density � 2.5–3.5 J cm-2

Spot size 30–40 μm
Repetition rate 3 Hz

2 3 1© 2023 The Authors. Geostandards and Geoanalytical Research © 2023 International Association of Geoanalysts.
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H2 (58Fe) and H4 (60Ni). 53Cr and 60Ni were monitored and
used for isobaric interference correction of 54Cr on 54Fe and
58Ni on 58Fewith a 54Cr/53Cr ratio of 0.2489 and 60Ni/58Ni
ratio of 0.3852, respectively (Meija et al. 2016, de Vega
et al. 2020). The details of the in situ Fe isotopic measurement
method are described by Feng et al. (2022).We used the new
isotopic referencematerial IRMM-524A (de Vega et al. 2020)
as the "external" reference material to replace the interna-
tional reference material IRMM-014 because the latter is
nearly exhausted and not readily available. IRMM-524A iron
metal has the same value as IRMM-014 within experimental
uncertainty and has been proven to be feasible for in situ Fe
isotope measurement (Xu et al. 2022). Meanwhile, PAS-
Py600, PAS-Cpy400 (Feng et al. 2022) and Aa018 (Chen
et al. 2021a)were usedas unknown samples to verify thedata
quality. The Fe isotopic composition was expressed in delta (δ)
notation (per mill, ‰) as follows:

δxFe ¼ xFe=54Fe
� �

sample=
xFe=54Fe
� �

RM

h i
�1 (2)

where "sample" and "RM" represent the measured samples
and the reference material IRMM-524A, respectively, and x is
mass number 56 or 57. All of the measurement results were
converted to the reference value of IRMM-014.

For Cu isotope measurement, ion beams of 63Cu and
65Cu were collected in L2 and C Faraday cups, respectively.
The mass spectrometer was operated in the low mass
resolution mode with a resolving power of approximately
400 (peak edge width from 5% to 95% of the full peak
height). Individual data acquisition consisted of one block of
120 cycles and an integration time of 0.524 s per cycle. The
reference material JGZ-78 (Yang et al. 2023) was employed
as the calibration material, whereas chalcopyrite TC1725
(Bao et al. 2021a) and JGZ-29 (Yang et al. 2023) were
analysed as unknown samples to correct instrument time drift
and verify the data quality. The detail of reference materials
JGZ-29, JGZ-78 and TC1725 are listed in Table 3.

The final Cu isotopic composition was expressed in delta
(δ) notation (per mill, ‰) as follows:

δ65Cu ¼ 65Cu=63Cu
� �

sample=
65Cu=63Cu
� �

RM

h i
�1 (3)

where "sample" and "RM" represent the measured samples
and the reference material JGZ-78, respectively. All δ values
were converted to NIST SRM 976 for inter-laboratory
comparisons. All of the in situ measurement data in this
study were processed using the Iso-compass software
(Zhang et al. 2020).

Bulk Fe-Cu isotope measurements by
SN-MC-ICP-MS

SN-MC-ICP-MS for Fe and Cu isotope measurements
was performed at the GPMR and Wuhan Sample Solution
Analytical Technology Co. Ltd., respectively. For Fe isotope
measurements, sample powders (� 200 mg) were dis-
solved in a HF–HNO3–HCl (+0.001% H2O2) system. Iron
purification was performed according to the method
described by Huang et al. (2011). Matrix elements were
removed from the AG-MP-1M resin column in 9 ml of 8 mol
l-1 HCl, while Fe was collected using 15 ml of 0.5 mol l-1 HCl
and 1 ml of high-purity water. The same column procedure
was repeated twice to ensure complete elimination of the
matrices. The final Fe eluate was dried, and its condition was
converted in 0.35 mol l-1 HNO3 for isotopic measurement.
The total procedural blank of Fe was approximately 20 ng,
which was considered negligible for analysis. Geological
reference materials BCR-2, BHVO-2 and GSB, were
analysed as quality control reference materials. Details of
the solution Fe isotopic measurements have been described
by Lei et al. (2022).

For Cu isotope measurement, approximately 10–30 mg
of the sample powders were dissolved using the HF and
HNO3 procedure. After complete digestion, 1 ml of HCl was
added, and the mixture was evaporated to dryness. For
chemical purification, the chromatographic procedure was
modified according to the methods described by Maréchal
et al. (1999) and Liu et al. (2014). The residue in these samples
was dissolved in 1ml of 8 mol l-1 HCl+ 0.001%H2O2. A 1ml
sample solution was loaded onto 2 ml pre-cleaned AG-MP-
1M resin. After elution of thematrix elements with 9ml 8mol l-1

HCl + 0.001% H2O2, 28 ml 8 mol l-1 HCl + 0.001% H2O2

was used to collect Cu. The final Cu elution solution was
evaporated to dryness and converted to nitrate by re-addition
and re-evaporation of 0.5 ml purified HNO3 and 0.5ml high-
purity (Milli-Q™) water twice, separately. Finally, these samples
were redissolved in 2% HNO3 for isotopic measurement. All
Cu isotope data were measured relative to NIST SRM 3114
and then converted to NIST SRM 976 after δ65CuNIST SRM 976

= δ65Cusam-NIST SRM 3114+0.18 calculation (Hou et al. 2016).
The details of the solution Cu isotopic measurements are
described by Zhu et al. (2019).

Bulk S isotope measurements by IRMS

Randomly selected pure minerals of Ll-Cpy, Ll-Po and Ll-
Sp in different sub-package tubes were milled into powders
for bulk sulfur isotope determinations. The Ll-Cpy and Ll-Po
experiments were conducted at the Beijing Research Institute

2 3 2 © 2023 The Authors. Geostandards and Geoanalytical Research © 2023 International Association of Geoanalysts.
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of Uranium Geology (BRIUG), Beijing Createch Testing
Technology, Co., Ltd (BCTT), the Chengdu University of
Technology (CDUT), Institute of Geochemistry, Chinese
Academy of Sciences (IGCAS), Laboratory for Stable Isotope
Geochemistry, Institute of Geology and Geophysics (LSI-
GIGG), and the State Key Laboratory of Biogeology and
Environmental Geology (BGEG) and the Nanjing Institute of
Geology and Palaeontology, CAS (NIGPCAS). The Ll-Sp
minerals were analysed at IGCAS, BRIUG and BGEG.

For the BRIUG and LSIGIGG analytical procedures,
approximately 8 mg of sulfide powder were individually
mixed with Cu2O and further milled in an agate mortar.
These mixtures were then reacted under vacuum at 980 °C,
and the produced SO2 gas was measured by a MAT-251
or Delta-S (Thermo Fisher Scientific Inc) mass spectrometer
using the standard dual-inlet protocol (Chen et al. 2021b).

For the analytical procedures of IGCAS, BCTT and
NIGPCAS, experiments were performed using a MAT-253
mass spectrometer (Thermo Finnigan, USA) combined with a
Flash EA 2000 element analyser and a continuous flow
(Conflo IV) unit. Approximately 100 μg of sulfide samples were
packed into a tin capsule and delivered into a reactor, which
was filled with oxidant tungsten trioxide (WO3) and the
reducing agent elemental Cu. When the sample fell into
the reaction tube, oxygen was injected into the reactor. The
sample and tin capsules were flash-combusted to produce
SO2 and SO3 gases. Finally, the gas was carried into the mass
spectrometer by helium. The precision values of repeated
analysis of IAEA S1 (-0.3‰), IAEA S2 (+22.62‰) and IAEA S3
(-32.49‰) were better than 0.2‰ (1s) (Baublys et al. 2004).

For the analytical procedures at BGEG and CDUT, the
sulfide powder and the reference materials were individually
weighed into tin capsules and mixed with oxidation catalyst
V2O5. The capsules were then flash-combusted at 1050 °C
in a single quartz tube filled with high-purity oxidising
(tungsten trioxide, WO3) and reducing (elemental Cu)
agents. The combustion-derived gases SO2 were measured
using EA-IRMS (Thermo Fisher Scientific Delta V Plus) after
separation and purification (Feng et al. 2018).

Results and discussion

Chemical compositions of sulfide samples

EPMA and LA-ICP-MS were used to measure the
chemical compositions of the candidate reference materials,
and the results are listed in Tables 5 and S1 (Appendix S2).

Measurement results from EPMA show that Ll-Cpy
fragments (n = 15) are relatively homogeneous in chemical
compositions with the mass fraction of Fe ranging from
30.42% m/m to 30.85% m/m, Cu ranging from 33.28%
m/m to 33.71% m/m, and the S ranging from 35.54%
m/m to 35.937% m/m. The mass fractions of Fe and S in
Ll-Po fragments (n = 20) range from 60.11% m/m to
60.77% m/m and from 9.27% m/m to 39.83% m/m,
respectively. In the fifteen individual grains analyses of Ll-Sp
sample, the mass fraction of Fe ranges from 7.27% m/m to
8.01% m/m, Zn ranges from 58.45% m/m to 59.44%
m/m, and the S ranges from 32.80% m/m to 33.22%
m/m. EPMA measurements reveal homogeneous major
element compositions in the candidate chalcopyrite,
pyrrhotite and sphalerite samples.

Forty-five fragments of Ll-Cpy and Ll-Po were randomly
selected for element mass fraction determination by LA-ICP-
MS. NIST SRM 610 (Jochum et al. 2005) was used for
instrument time-drift correction, while sulfide reference
material MASS-1 (Wilson et al. 2002) was used for
calibration and Fe was used as the internal standard
element for the quantitative calibration. The measurement
results are presented in Table S1 (Appendix S2). The Cr
mass fraction in Ll-Cpy and Ll-Po are 0.66 � 30 μg g-1 (1s,
k = 45) and 1.22 � 0.24 μg g-1 (1s, k = 45), whereas the
Cr/Fe (the content ratio of elements Cr and Fe) in Ll-Cpy and
Ll-Po are 2.15 × 10-6 and 2.02 × 10-6, respectively.
According to the research results of Lei et al. (2022), when
Cr/Fe in the sample is less than 1.00 × 10-4, no detectable
deviation in Fe isotope ratio will be observed. Despite the
heterogeneous distribution of certain trace elements, they do
not affect the determination of the S-Fe-Cu isotopes.

The backscattered electron (BSE) images of random
fragments in the Ll-Cpy, Ll-Po and Ll-Sp epoxy resin mounts
are shown in Figure 3. Most sulfide fragments (Figure 3a)
show a clean sample surface; however, a few silicate
inclusions may be present in certain fragments. The
inclusions’ characteristics were easily identified and avoided
during in situ analysis. Overall, the flat and clean surfaces of
the candidate sulfide samples make them suitable for
microanalysis.

Homogeneity assessment of sulfur isotopes in
Ll-Cpy, Ll-Po and Ll-Sp

At the GPMR, fs-LA-MC-ICP-MS S isotope measurements
were conducted for two years for assessment of long-term
stability and homogeneity (Figures 4–6); each random
fragment in different epoxy resin mounts was analysed using

2 3 3© 2023 The Authors. Geostandards and Geoanalytical Research © 2023 International Association of Geoanalysts.
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two to three spots. The measurement results for quality control
reference materials PPP-1, HTS4-6 and SPH-1 are presented
in Table S1 (Appendix S1).

Figure 4a, b show the results of Ll-Cpy (approximately
380 fragments) in different analysis period. In session 1 of Ll-
Cpy (Figure 4a), the selected grains yielded mean δ34SV-CDT

Table 5.
EPMA measurement results for element mass fractions (g 100 g-1) in chalcopyrite Ll-Cpy, pyrrhotite Ll-Po
and sphalerite Ll-Sp

Sample No. Ni Mn As Fe Cu Zn S Total

Ll-Cpy Spot 1 0.00 0.02 0.00 30.51 33.28 0.05 35.54 99.39
Spot 2 0.00 0.00 0.01 30.53 33.52 0.06 35.68 99.80
Spot 3 0.00 0.00 0.00 30.64 33.32 0.06 35.48 99.51
Spot 4 0.00 0.01 0.00 30.85 33.47 0.06 35.60 99.99
Spot 5 0.00 0.01 0.00 30.53 33.47 0.05 35.68 99.74
Spot 6 0.00 0.01 0.01 30.62 33.71 0.04 35.57 99.96
Spot 7 0.01 0.00 0.00 30.58 33.42 0.08 35.70 99.79
Spot 8 0.00 0.00 0.00 30.61 33.46 0.04 35.59 99.70
Spot 9 0.00 0.00 0.01 30.70 33.36 0.05 35.70 99.83
Spot 10 0.00 0.00 0.00 30.77 33.30 0.05 35.75 99.87
Spot 11 0.00 0.00 0.00 30.73 33.54 0.03 35.91 100.21
Spot 12 0.00 0.01 0.00 30.73 33.37 0.07 35.73 99.92
Spot 13 0.00 0.01 0.00 30.74 33.39 0.06 35.77 99.96
Spot 14 0.00 0.00 0.02 30.42 33.64 0.04 35.85 99.97
Spot 15 0.00 0.00 0.00 30.77 33.41 0.04 35.93 100.15

Mean val. 0.00 0.00 0.00 30.65 33.45 0.05 35.70 99.85
Ll-Po Spot 1 0.00 0.00 0.00 60.34 0.03 0.00 39.71 100.08

Spot 2 0.00 0.02 0.00 60.40 0.03 0.03 39.44 99.91
Spot 3 0.01 0.00 0.00 60.26 0.02 0.00 39.44 99.73
Spot 4 0.01 0.01 0.00 60.67 0.01 0.00 39.57 100.28
Spot 5 0.00 0.01 0.01 60.16 0.03 0.01 39.59 99.80
Spot 6 0.01 0.00 0.00 60.43 0.03 0.00 39.40 99.87
Spot 7 0.00 0.00 0.00 60.55 0.02 0.02 39.47 100.08
Spot 8 0.00 0.01 0.00 60.77 0.01 0.01 39.44 100.25
Spot 9 0.00 0.00 0.00 60.15 0.05 0.00 39.62 99.82
Spot 10 0.00 0.00 0.02 60.17 0.02 0.00 39.56 99.77
Spot 11 0.00 0.00 0.00 60.20 0.03 0.00 39.70 99.93
Spot 12 0.00 0.00 0.01 60.19 0.04 0.02 39.49 99.75
Spot 13 0.00 0.00 0.01 60.18 0.04 0.00 39.27 99.49
Spot 14 0.00 0.00 0.01 60.26 0.03 0.01 39.66 99.97
Spot 15 0.00 0.00 0.00 60.15 0.02 0.00 39.64 99.80
Spot 16 0.00 0.00 0.02 60.15 0.05 0.01 39.69 99.93
Spot 17 0.01 0.01 0.00 60.11 0.05 0.00 39.79 99.96
Spot 18 0.00 0.01 0.00 60.56 0.01 0.00 39.45 100.03
Spot 19 0.00 0.00 0.00 60.46 0.00 0.00 39.45 99.92
Spot 20 0.00 0.00 0.00 60.52 0.03 0.02 39.83 100.40

Mean val. 0.00 0.00 0.00 60.32 0.03 0.01 39.56 99.93
Ll-Sp Spot 1 0.00 0.15 0.00 7.74 0.00 58.63 33.04 99.57

Spot 2 0.00 0.14 0.00 7.66 0.00 59.25 32.80 99.85
Spot 3 0.01 0.16 0.02 7.89 0.00 58.63 33.04 99.74
Spot 4 0.01 0.17 0.00 7.90 0.00 58.75 33.19 100.03
Spot 5 0.00 0.17 0.01 7.89 0.00 58.74 32.98 99.78
Spot 6 0.00 0.14 0.00 7.85 0.00 58.63 33.15 99.77
Spot 7 0.00 0.12 0.01 7.41 0.00 59.36 32.93 99.84
Spot 8 0.00 0.14 0.00 7.75 0.00 59.44 33.13 100.46
Spot 9 0.03 0.15 0.00 7.85 0.00 58.94 32.92 99.89
Spot 10 0.02 0.12 0.00 7.65 0.00 59.18 33.00 99.96
Spot 11 0.00 0.15 0.00 8.01 0.00 58.45 32.97 99.58
Spot 12 0.00 0.14 0.00 7.92 0.00 59.11 32.95 100.12
Spot 13 0.02 0.15 0.00 8.01 0.00 58.66 33.22 100.07
Spot 14 0.00 0.13 0.00 7.27 0.00 59.42 33.09 99.90
Spot 15 0.00 0.15 0.00 7.83 0.00 58.79 32.96 99.73

Mean val. 0.01 0.15 0.00 7.77 0.00 58.93 33.03 99.89

2 3 4 © 2023 The Authors. Geostandards and Geoanalytical Research © 2023 International Association of Geoanalysts.
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values of 6.19 � 0.28‰ (2s, n = 488), while the mean
δ34SV-CDT value was 6.23 � 0.31‰ (2s, n = 274) in session
2 (Figure 4b). Sulfur isotopic compositions in different periods
were identical with the external precision (2s) ranging from
0.28‰ to 0.31‰. All the results show normal distributions in
the probability density plots (Figure 4c, d), indicating the
excellent sulfur isotopic homogeneity of the chalcopyrite Ll-
Cpy. The in situ S isotope measurement results for Ll-Cpy in
different measurement sessions are presented in Table S2
(Appendix S2).

Figure 5a, b shows the sulfur isotopic composition of Ll-Po
(approximately 110 fragments) during the two analysis
periods. In session 1 of Ll-Po (Figure 5a), the grains yielded a
mean δ34SV-CDT value of 6.12 � 0.36‰ (2s, n = 207),
which is consistent with the value 6.28 � 0.35‰ (2s,
n = 129) of session 2 (Figure 5b) within the uncertainty.
Meanwhile, there no abnormal data were found in the
probability density plots (Figure 5c, d), indicating good sulfur
isotopic homogeneity of pyrrhotite Ll-Po. The in situ S isotope
results of Ll-Po in different measurement sessions are
presented in Table S3 (Appendix S2).

For the Ll-Sp, the δ34SV-CDT values of session 1 (Figure 6a)
and 2 (Figure 6b) are 6.29� 0.38‰ (2s, n= 107) and 6.19
� 0.37‰ (2s, n = 361), respectively. Repeated analyses of

the Ll-Sp samples in approximately 230 fragments yielded a
good external reproducibility of 0.37‰, which not only
indicated the homogeneous distribution of sulfur isotopes but
also met the requirement of in situ sulfur isotope measurement
by fs-LA-MC-ICP-MS (Figure 6c, d). The in situ S isotope results
of Ll-Sp in different measurement sessions are presented in
Table S4 (Appendix S2).

Meanwhile, the in situ sulfur isotope ratios of Ll-Cpy and
Ll-Po were determined using ns-LA-MC-ICP-MS at the SKLCD
(Table S5, Appendix S2). The measurement results for the
quality control reference materials TC1725 and RPPY are
listed in Table S2 (Appendix S1). The mean values of Ll-Cpy
and Ll-Po obtained at the SKLCD are 6.29 � 0.34‰ (2s,
n = 15) and 6.14 � 0.28‰ (2s, n = 18), respectively. These
values are consistent with the results obtained at the GPMR
(Table 6). All of the in situ measurement results for the
candidate chalcopyrite, pyrrhotite and sphalerite samples
showed extremely homogenous in sulfur isotope ratios.

Randomly selected Ll-Cpy, Ll-Po and Ll-Sp grains in
different sub-package tubes (Figure 2) were analysed using
bulk analytical methods in different laboratories to assess
the S isotope composition (Figure 7 and Table S6 in
Appendix S2). The measurement results of the reference
materials by IRMS are listed in Table S2 (Appendix S1). All

Figure 3. Backscattered electron images (BSE) of a random fragment in the (a) Ll-Cpy, (b) Ll-Po and (c–d) Ll-Sp epoxy

resin mounts.

2 3 5© 2023 The Authors. Geostandards and Geoanalytical Research © 2023 International Association of Geoanalysts.
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δ34SV-CDT values obtained by independently IRMS labora-
tories are consistent within analytical uncertainty, and the
mean bulk analysis values agree well with the LA-MC-ICP-
MS results (Table 6). Considering the isotope ratio
uncertainty contributed from the uncertainties of bracketing
calibrator and normalisation materials, we combined the
experimental standard deviation, the reproducibility of
the reference materials, and the uncertainty of the reference
values of the reference materials into the final data. The final
recommended δ34SV-CDT values for Ll-Cpy, Ll-Po and Ll-Sp are
6.13 � 0.37‰ (2s), 6.42 � 0.37‰ (2s) and 6.28 � 0.38‰
(2s), respectively (Figure 7 and Table S3 in Appendix S1).

Homogeneity assessment of the iron isotope in Ll-
Cpy and Ll-Po

In this study, we performed Fe isotope homogeneity
assessment experiments on Fe-bearing chalcopyrite Ll-Cpy
and pyrrhotite Ll-Po (Figure 8). Approximately sixty-four and
fifty-nine individual fragments in the Ll-Cpy and Ll-Po mounts,
respectively, were selected for LA-MC-ICP-MS Fe isotope
composition analyses and the mean δ56FeIRMM-014 values
for Ll-Cpy and Ll-Po are 0.60 � 0.17‰ (2s, n = 64) and

-0.67 � 0.18‰ (2s, n = 59), respectively. We combined the
experimental standard deviation, the reproducibility of
the reference materials, and the uncertainty of the reference
values of the reference materials into the final SN-MC-ICP-
MS results. The recommended δ56FeIRMM-014 values for Ll-
Cpy and Ll-Po are 0.60 � 0.07‰ (2s) and 6.39 � 0.37‰
(2s), respectively (Figure 8 and Table S3 in Appendix S1).
The results demonstrated that the Fe isotope composition in
Ll-Cpy and Ll-Po samples were homogeneous and could be
used as potential reference materials for sulfide Fe isotope
measurement. The detailed Fe isotopic compositions of Ll-
Cpy and Ll-Po, obtained using LA/SN-MC-ICP-MS, are listed
in Table S7 (Appendix S2). The measurement results of the
quality control reference materials during in situ and bulk
analyses are listed in Tables S4 and S5 (Appendix S1).

Homogeneity assessment of the copper isotope in
Ll-Cpy

The Cu isotopic characteristics of the Cu-bearing
chalcopyrite Ll-Cpy reference material were analysed using
fs-LA-MC-ICP-MS (Figure 9). A total of 164 fragments in
different Ll-Cpy mounts were randomly selected for in situ Cu

Mean value = 6.23 ± 0.31 (2s, n = 274)
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Figure 4. Plots of fs-LA-MC-ICP-MS measurement results for Ll-Cpy in different analysis periods. Sulfur isotope

measurement results in (a) session 1 and (b) session 2. (c) and (d) show the histograms of δ34SV-CDT values in (a) and

(b), respectively. The range bars for single analyses represent 2SE.
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isotope measurement, and the obtained LA value of
0.58 � 0.15‰ (2s, n = 164) coincided with the value
0.57 � 0.06‰ (2s) obtained by solution analyses. The
solution value also combined the experimental standard
deviation, the reproducibility of the reference materials and
the uncertainty of the reference values of the reference
materials. Repeated analyses of the Ll-Cpy yielded a good
"external reproducibility" of 0.15‰. The homogenous of Cu
isotopic composition and good agreement between the
laser and solution values indicate that the Ll-Cpy sample can
be used as a reference material for in situ Cu isotope
analysis. The Cu isotope composition of Ll-Cpy obtained by
LA/SN-MC-ICP-MS is listed in Table S8 (Appendix S2). The
measurement results of the quality-control reference mate-
rials used during in situ and bulk analyses are listed in
Tables S6 and S7 (Appendix S1).

Analytical feasibility of the new reference
materials

Ll-Cpy, Ll-Po and Ll-Sp were used as bracketing calibrators
to determine the S-Fe-Cu isotopic ratios of the reported sulfide
reference materials with well-known isotopic compositions
(Figure 10). The abscissa represents the reference values of

the reported sulfide reference materials, whereas the
measured values obtained in this study are shown on the
ordinate. The δ34SV-CDT results for pyrite PPP-1, pentlandite JC-
Pn, pyrrhotite JC-Po, chalcopyrite TC1725, synthesised pyrite
PAS-Py600 and synthesised chalcopyrite PAS-Cpy400 were
5.44 � 0.14‰ (2s, n = 7), -0.14 � 0.16‰ (2s, n = 7),
0.17 � 0.18‰ (2s, n = 7), 12.35 � 0.20‰ (2s, n = 7),
18.44� 0.13‰ (2s, n = 7) and 10.55� 0.17‰ (2s, n = 7),
respectively. The measured δ56FeIRMM-014 results of JC-Pn, JC-
Po, PAS-Py600 and PAS-Cpy400 are 1.41 � 0.15‰ (2s,
n= 4), -0.46� 0.22‰ (2s, n= 4), 0.21� 0.09‰ (2s, n= 4)
and 0.01 � 0.09‰ (2s, n = 4), respectively. The Cu isotope
results of PAS-Cpy400 and TC1725 are 0.36 � 0.10‰ (2s,
n = 4) and -0.01 � 0.13‰ (2s, n = 4), respectively. All
the measurement results (Table S9, Appendix S2) were in
good agreement with the reference values, plotting close to
the 1:1 lines in Figure 10 (a–d). Therefore, we conclude that Ll-
Cpy, Ll-Po and Ll-Sp are ideal calibration and quality control
reference materials for in situ S-Fe-Cu isotope measurements.

Conclusions

In this study a set of potential reference materials, Ll-
Cpy (chalcopyrite), Ll-Po (pyrrhotite) and Ll-Sp (sphalerite),
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Figure 5. Plots of fs-LA-MC-ICP-MS measurement results for Ll-Po in different analysis periods. Sulfur isotope

measurement results in (a) session 1 and (b) in session 2. (c) and (d) are the histograms of δ34SV-CDT values in (a) and

(b), respectively. The range bars for single analyses represent 2SE.
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were developed for in situ S-Fe-Cu isotope measurements.
The results obtained from bulk and in situ measurements
indicate that Ll-Cpy, Ll-Po and Ll-Sp have homogeneous
S-Fe-Cu isotopic compositions. The recommended δ34SV-CDT
values for Ll-Cpy, Ll-Po and Ll-Sp are 6.13 � 0.37‰ (2s),
6.42 � 0.37‰ (2s) and 6.28 � 0.38‰ (2s), respectively.

The recommended δ56FeIRMM-014 values of Ll-Cpy and Ll-
Po are 0.57 � 0.07‰ (2s) and -0.62 � 0.07‰ (2s),
respectively. The determined mean δ65CuNIST SRM 976 in
Ll-Cpy is 0.57 � 0.06‰ (2s). These reference materials
exist in sufficient quantity for sharing with other laboratories
worldwide.

Table 6.
Summary of mean values of sulfur isotopes (δ34S) from bulk and in situ methods, and recommended values
in chalcopyrite Ll-Cpy, pyrrhotite Ll-Po and sphalerite Ll-Sp

Method Laboratory Ll-Cpy Ll-Po Ll-Sp

δ34S (‰) 2s n δ34S (‰) 2s n δ34S (‰) 2s n

IRMS BRIUG 6.19 0.06 12 6.23 0.09 12 6.24 0.15 12
BGEG 6.14 0.19 9 6.27 0.23 7 6.19 0.24 5
IGCAS 5.92 0.13 4 6.35 0.11 4 6.41 0.06 4
CDUT 5.98 0.08 4 6.42 0.06 4 - - -
BCTT 6.24 0.14 6 6.55 0.21 6 - - -

NIGPCAS 6.43 0.15 6 6.66 0.17 6 - - -
LSIGIGG 5.99 0.24 5 6.54 0.05 5 - - -

LA-MC-ICP-MS GPMR session 1 6.19 0.28 488 6.12 0.36 207 6.29 0.28 117
GPMR session 2 6.23 0.31 274 6.28 0.31 129 6.19 0.37 361

SKLCD 6.29 0.34 15 6.14 0.28 18 - - -
Recommended value 6.13 0.37 - 6.42 0.37 - 6.28 0.38 -

The uncertainty of the recommended value is the combined uncertainty.
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